
Table 1. Representative key findings in Ras research 
Year Discovery Reference 
1964 Harvey murine sarcoma virus (“Ha-MuSV”) is isolated by passage of Moloney mouse 

type-C virus in rats 
1 

1967 Kirsten murine sarcoma virus is isolated by passage of Kirsten mouse type-C virus in 
rats; later designated “Ki-MSV” 

2 

1973 HaSV murine sarcoma virus genome contains rat gene sequences 3 
1979 Viral ras genes encode 21 kDa proteins, which are designated “p21 Src”  4 
 Viral H-Ras and K-Ras proteins are GDP- and GTP-binding proteins 5, 6 
 DNA from chemically transformed rodent cells can cause morphologic transformation 

(focus formation) when transfected into recipient NIH/3T3 cells 
7 

1980  Arf (ADP ribosylation factor) is identified as a “cytosolic macromolecule” required for 
cholera toxin-mediated activation of adenylate cyclase; shown later to be a GTP-binding 
protein and a member of the Ras superfamily 

8 

 HaSV (Ha-MuSV) p21 protein is located at the inner face of the plasma membrane 9 
 Antiserum against viral Ha-MSV p21 detects a related endogenous 21 kDa protein that 

is conserved in mammalian cell lines and other vertebrates 
10 

1981 Human tumor cell lines contain transforming genes detectable upon transfection of DNA 
into NIH/3T3 cells 

11, 12 

 Overexpression of normal rat sequences homologous to the Ha-MuSV transforming 
gene transforms NIH/3T3 cells 

13 

 Viral H-ras and K-ras genes each have a normal cellular gene counterpart 14 
 Viral ras genes can promote growth of normal erythroid precursors 15 
1982 Viral H-Ras protein is synthesized initially as a soluble precursor 16 
 Overexpression of normal human H-Ras causes growth transformation of NIH 3T3 

fibroblasts 
17 

 Transforming genes detected in human cancer cell lines are identified as HRAS and 
KRAS sequences 

18-20 

 Molecular cloning of human HRAS and KRAS genes is accomplished by use of probes 
from the coding regions of v-Ha-ras and v-Ki-ras 

21 

 Nucleotide sequence of viral H-ras gene is determined 22 
 Normal p21 Ras proteins bind GDP and GTP 23 
 Transforming HRAS from the EJ/T24 bladder tumor cell line is activated by a single 

amino acid substitution at codon 12 
24-26 

 Membrane-associated H-Ras contains lipid, as shown by 3H-palmitic acid labeling 27 
1983 Complete genomic organization and sequence of human HRAS is determined 28 
 Mutationally-activated NRAS is identified in neuroblastoma cells 29 
 HRAS, KRAS and NRAS map to different chromosomes (11, 12 and 1, respectively) 30 
 Complete genomic organization and sequence information indicates that normal and 

tumor human KRAS both have splice variants of exons 4A and 4B, as well as a 
processed pseudogene; first suggestion that RAS gene products have a common 
modular structure with a “constant” and a “variable” region 

31, 32 

 Transforming KRAS genes isolated from lung and colon cancers can be activated by 
different point mutations at codon 12  

33 

 Activated H-Ras transformation of primary rodent fibroblasts requires concurrent 
activation of Myc oncogene or inactivation of Rb tumor suppressor, e.g., by polyoma 
large-T antigen/adenovirus E1A 

34, 35 

 S. cerevisiae RAS genes are molecularly cloned and sequenced 36 
 First Ras-related protein, YPT1, is identified in S. cerevisiae; later recognized as the 

founding member of the Rab family (Rab1)  
37 

 Chemically induced mammary tumors in mice display activating HRAS mutations 38 
1984  The C-terminus of H-Ras, and specifically cysteine 186, is required for Ras lipid binding, 

membrane association and transformation 
39, 40 

 Microinjection of recombinant H-Ras stimulates cell proliferation 41-43 
 Mutant Ras has impaired intrinsic GTPase activity 43 -45 
 H-Ras transforming activity is activated by 18 of 19 different amino acid substitutions at 46 



amino acid 12 
1985 Adenylate cyclase is identified as an effector of S. cerevisiae but not mammalian Ras 47, 48 
 Normal Ras is required for cell proliferation 49 
 Ras homologous (Rho) proteins identified fortuitously in Aplysia; human orthologs 

identified 
50 

 Transforming NRAS genes identified from patient acute myelogenous leukemia samples 
in a nude mouse tumorigenicity assay have activating mutations at codon 13 

51 

 Ras activation causes differentiation including neurite formation and cessation of growth 
in PC12 pheochromocytoma cells 

52 

1986 Any substitution at amino acid 61 of H-Ras impairs its intrinsic GTPase activity 53 
 Normal Ras is required for transformation by receptor tyrosine kinase but not Raf 

oncoproteins 
54 

 Ras effector domain is defined as residues 32-42 55 
1987 Identification of S. cerevisiae mutant dpr1 indicating that fatty acid acylation is not the 

first Ras processing step; foreshadows discovery of farnesyltransferase 
56 

 Tissue-specific transgene expression of activated H-Ras causes mouse mammary 
tumor development that is enhanced by concurrent Myc activation 

57, 58 

 Colon cancers have a high frequency of KRAS mutation  59 
 Ras GTPase activating protein (GAP) activity is identified; mutant Ras is refractory to 

stimulation 
60 

1988 First H-Ras crystal structure determined, for residues 1-171, at 2.7A resolution; 
however, in response to a second independent determination of H-Ras crystal structure 
published in 1989, aspects of this first report were reinterpreted and were found to be in 
agreement with this second study 

61-63 

 Pancreatic cancers have a high frequency of KRAS mutations  64 
 Ras proteins are carboxyl-methylated 65, 66 
 A Ras mutant, S17N, is identified as a dominant negative protein that has preferential 

affinity for GDP and blocks the function of endogenous Ras; becomes key tool for Ras 
studies 

67 

 The SAR1 (Secretion-associated and Ras-related) gene is identified in a genomic library 
screen for suppressors of SEC12 in S. cerevisiae 

68 

 Purification and molecular cloning of p120 RasGAP 69, 70 
1989 All Ras proteins are modified by a farnesyl isoprenoid lipid, which is essential for Ras 

membrane association 
71-73 

 H-Ras and N-Ras but not K-Ras are additionally modified by palmitoylation on cysteines 
upstream of the CAAX, which enhances membrane association and biological activity 

72 

1990 Ras undergoes a conformational change during GDP/GTP cycling 74, 75 
 IRA1 and IRAS2 encode GAPs for yeast RAS proteins 76 
 SCD25 established in S. cerevisiae as the first RasGEF 77 
 Farnesyltransferase enzyme is identified and shown to be inhibited by tetrapeptides that 

mimic the C-terminal CAAX motif of Ras 
78 

 Normal Ras is transiently activated by extracellular stimuli or by tyrosine kinase 
oncoproteins 

79-81 

 NF1 tumor suppressor gene encodes a RasGAP 82-84 
 Ras membrane association requires the CAAX motif and a second signal within the C-

terminal hypervariable domain consisting of either a polybasic domain (K-Ras4B) or 
palmitoylation (H-Ras, N-Ras and K-Ras4A) 

85 

1991 Minimal Ras membrane targeting domain is defined:  Ras CAAX motif or CAAL motif 
plus a hypervariable domain-derived second signal, is sufficient to target Ras or a 
cytosolic heterologous protein to membranes  

86 

1992 First mammalian Ras guanine nucleotide exchange factor (GEF) is identified 87 
 Raf activates MEK1 and MEK2 (MAPKKs) 88-92 
1993 Disruption of mutant KRAS by homologous recombination impairs colon tumor cell 

growth 
93 

 Grb2 is identified as a key link between EGFR and Sos, in a chain leading to activation 
of Ras 

94 



 Farnesyltransferase inhibitors block the growth of H-Ras-transformed cells in culture 95, 96 
 Raf is identified as the first mammalian effector of Ras 97 
 Ran is a regulator of nuclear transport 98-100 
1994 Membrane targeted Raf-1 is constitutively activated, supporting a role for membrane 

translocation in Ras activation of effector function 
101, 102 

 Class I phosphatidylinositol 3-kinases are Ras effectors 103 
1995 Selective Ras effector domain mutants demonstrate a role for non-Raf effectors in Ras 

transformation 
104 

 NRAS is dispensable for mouse development 105 
 K-Ras4B, the Ras isoform most common in cancer, is resistant to FTIs in vitro 106 
 Ras transformation is dependent on Rac1 and RhoA 107-109 
 Structure of Raf-1 RBD in complex with Rap1A determined 110  
 FTIs cause regression of mammary tumors in an HRAS transgenic mouse model 111 
 Sensitivity to FTI-mediated growth inhibition of tumor cell lines in vitro does not correlate 

with their Ras mutation status, suggesting that Ras may not be the key FTI target 
112 

 Genetic studies in Drosophila and C. elegans identify the KSR (kinase suppressor of 
Ras) scaffold protein as a regulator of the Raf-MEK-ERK cascade 

113-115 

1996 First structure of RasGAP is solved for the p120 RasGAP catalytic domain 116 
 Ras binding domain of Raf is utilized as an affinity pulldown assay to monitor Ras-GTP 

formation in cells, thus sparing the need to use mCi levels of 32P to determine Ras 
activation 

117, 118 

1997 Senescence induced by ectopic activated H-Ras in primary fibroblasts is prevented by 
loss of p53 or p16 

119 

 K-Ras and N-Ras are alternatively prenylated by GGTase-I in the presence of FTIs, 
causing their resistance to FTI-mediated inhibition of processing 

120-122 

 2.5A structure of H-Ras complexed with the RasGAP catalytic domain of p120 RasGAP 
provides a structural basis for the mechanism of activating mutations at G12 and Q61 

123 

 KRAS but not HRAS or NRAS is essential for mouse development 124, 125 
 NF-κB activation is required for Ras-mediated transformation because it suppresses 

oncogenic Ras-induced p53-independent apoptosis  
126 

1998 Nore1 (RASSF5) effector binds preferentially to Ras-GTP  127 
 RasGRP family of RasGEFs identified as transforming proteins 128, 129 
 Structure of the RA domain of RalGDS in complex with activated H-Ras shows 

interactions similar to those of the Raf-1 RBD, despite poor sequence homology of 
these two Ras-GTP interaction domains. However, the tetrameric “Ras-dimer” complex 
identified in this study was later shown to be a crystallographic artefact 

130, 131 

 First structure of a RasGEF, Sos1, solved in complex with H-Ras identifies a structural 
basis for Sos1-induced nucleotide release and Ras activation 

132 

1999 Sprouty is identified in a genetic screen as an inhibitor of Drosophila EGFR and Ras 
signaling 

133 

 N-Ras and H-Ras but not K-Ras traffick to the plasma membrane via the 
endomembrane, a process that requires a second signal in addition to the CAAX 

134, 135 

 Ras transforms primary human cells in cooperation with the catalytic subunit of 
telomerase (hTERT), SV40 large T Ag-mediated inactivation of Rb and p53 and with 
SV40 small t-mediated inactivation of PP2A 

136 

 Continuous expression of mutant NRAS is required for maintenance of melanomas 137 
2000 HRAS is dispensable for mouse development, but its loss reduces susceptibility to 

DMBA/TPA carcinogen-induced oncogenesis; KRAS mutations occur instead 
138 

 Structure of activated H-Ras in complex with the p110 gamma catalytic subunit of PI3K 
shows both similarities and differences compared to other Ras-effector complexes 

139 

2001 Somatic activation of endogenous mutant KRAS induces lung tumor development 140 
 The Ras effector RIN1 is also a GEF for Rab5 141 
 WT KRAS can inhibit mutant KRAS-induced lung tumor formation in mice 142 
2002 Nore1 (RASSF5) interacts with MST1 to promote Ras-induced apoptosis  143 
 Ras can signal from endomembrane locations 144 
 BRAF mutations found in melanoma and colon cancers in nonoverlapping occurrence 145 



with RAS mutations 
 The RacGEF Tiam1 is identified as a Ras effector and is required for HRAS-induced 

skin tumor formation in mice 
146, 147 

 The RalGEF effector pathway is important for Ras-mediated transformation of human 
cells 

148 

 shRNA-mediated suppression of mutant KRAS impairs tumorigenic growth of a 
pancreatic cancer cell line 

149 

 Yeast two-hybrid screen identifies putative small molecule inhibitors of the Ras/Raf 
interaction 

150 

2003 Structure of Ras/SOS complex suggests Ras-GTP-mediated positive feedback on Sos1 
RasGEF activity  

151 

 Calcium activates Ras on Golgi via the RasGEF RasGRP1 and inactivates it on the 
plasma membrane via the RasGAP CAPRI  

152 

 Loss-of-function mutations in RASA1 (p120 RasGAP) are found widely in the autosomal 
dominant disorder capillary malformation-arteriovenous malformation (CM-AVM)  

153 

2004 IMP E3 ligase identified as a Ras effector that downregulates the KSR scaffold to 
modulate Raf activation of MEK 

154 

 RASAL is a calcium-sensing RasGAP 155 
 Endogenous mutant KRAS expression induces proliferation rather than senescence 156 
 PIK3CA mutations are common in human cancers 157 
 Galectin-1 is a chaperone for H-Ras and has a farnesyl-binding pocket similar to the 

geranylgeranyl-binding pocket of RhoGDI for Cdc42 
158 

 H-Ras-induced IL-8 gene expression is required for stromal support of tumor 
angiogenesis and growth 

159 

 The Ras effector PLCε is required for HRAS-induced skin tumorigenesis 160 
2005 Integration of mouse and human data identifies a gene expression signature of mutant 

KRAS in human lung cancer 
161 

 The Ras effector and RalGEF, RalGDS, is required for HRAS-induced skin 
tumorigenesis 

162 

 RAS transcription is regulated by the let-7 family of microRNAs 163 
 Palmitoylated H-Ras and N-Ras undergo an acylation-deacylation cycle that dictates 

their membrane distributions 
164, 165 

 Endogenous KRAS activation and p53 mutation cooperate to promote pancreatic cancer 
progression 

166 

 RalA and RalB serve distinct and complementary roles in pancreatic tumor growth 167 
 Ras induces an EphA2 receptor tyrosine kinase negative feedback loop 168 
 An RNAi library screen identifies the homeobox protein PITX1 as a suppressor of Ras 

and growth transformation due to upregulation of the RasGAP RASAL1  
169 

 Endogenous KRAS activation causes expression of senescence markers in vivo in 
premalignant lung and pancreatic tumors 

170 

 Germline activating HRAS mutations are found in patients with Costello syndrome  171 
 Ras has differential effector requirements for tumor initiation versus progression 172 
 Structure of H-Ras in complex with the RA domain of PLC epsilon is determined 173 
2006 Protein kinase C phosphorylation of K-Ras4B causes mitochondrial localization and 

apoptosis 
174 

 Germline activating KRAS mutations are found in patients with cardio-facio-cutaneous 
(CFC) and Noonan syndromes 

175-177 

 Ubiquitination of H-Ras promotes its subcellular localization to endosomes 178 
 Germline activating mutations in MEK1 and MEK2 are found in CFC 179 
 Germline activating BRAF mutations are found in CFC 176, 179 
 RalB activation of Sec5 and TBK1 is required for tumor cell survival  180 
 Genome-wide sequencing establishes KRAS as the most frequently mutated oncogene 

in colon cancer 
181 

2007 Germline activating mutations in SOS1 are found in Noonan syndrome 182, 183 
 Chronic pancreatitis facilitates mutant KRAS-induced pancreatic tumorigenesis in mice 184 
 Ras binding to p110alpha is required for RAS-induced tumorigenesis in mice 185 



 PP2A phosphosphatase dephosphorylates RalA and inactivates its transforming activity 186 
 Germline activating mutations in Raf-1 are found in Noonan and LEOPARD syndromes 187, 188 
2008 Activated KRAS but not NRAS stimulates proliferation of colonic epithelium  189 
 Genome-wide sequencing establishes KRAS as the most frequently mutated oncogene 

in pancreatic cancer 
190 

 Untransformed mammary cells resident in the lung can be induced to form tumors there 
upon delayed expression of ectopic mutant KRAS and MYC  

191 

 KRAS regulatory elements and role for KRAS4A in mouse model of lung cancer 192 
 Concurrent pharmacologic inhibition of MEK and PI3K is required to block the growth of 

lung tumors induced by mutant K-Ras  
193 

2009 Synthetic lethal gene partners of mutant KRAS are identified in human tumors; neither 
mutation nor overexpression is required 

194-196 

 KRAS-/TP53-driven mouse model of pancreatic cancer displays same desmoplastic 
nature and poor vascularity of the human disease, and the same poor response to 
gemcitabine 

197 

 Lung and pancreatic tumor cell lines dependent on KRAS for viability have a well-
differentiated epithelial phenotype  

198 

 A mitochondrial function of STAT3 is required for Ras-mediated transformation 199 
 Genetic ablation of Raf-1 impairs mutant HRAS-driven skin carcinoma formation 200 
 Chronic inflammation can alter the fate of differentiated pancreatic endocrine cells and 

sensitize them to mutant KRAS-initiated oncogenesis 
201 

2010 Ras cooperates with Aurora-A via RalA 202 
 NRAS germline mutations identified in Noonan syndrome 203 
 Raf inhibitors paradoxically activate ERK in RAS- but not BRAF-mutant tumor cells 204-206 
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Table 2. Evolutionary conservation of Ras superfamilya 
Species Ras Rho Rab Arf Ran Other Total Reference 
Human 36 20 61/64 27/29 1 9 154 1-5 
D. melanogaster 19 9 32 28 2 0 90 6 
C. elegans 11 7 25 12 1 0 56 7 
S. cerevisiae 4 6 11 7 2 0 30 6 
A. thaliana 0 11 57 21 4 0 93 8 
O. sativa 0 17 47 43 4 0 111 6 
aSome compilations differ in number due to different sequence criteria for inclusion in a particular family.  
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Table 3. Genetic syndromes with mutation of Ras signaling components 
Syndrome Proteina Reference 
Autoimmune lymphoproliferative (ALPS) N-Ras GTPase (gof)* 1 

Capillary malformation-arteriovenous malformation 
(CM-AVM) 

p120 RasGAP (lof) 2 

Cardio-facio-cutaneous (CFC) K-Ras GTPase (gof) 3 

 B-Raf serine/threonine kinase (gof) 3, 4 

 MEK1 dual specificity kinase (gof) 4 

 MEK2 dual specificity kinase (gof) 4 

Costello (CS) H-Ras GTPase (gof) 5 

Hereditary gingival fibromatosis 1 (HGF) Sos1 RasGEF (gof) 6 

Legius (neurofibromatosis 1-like) SPRED1 scaffold protein (lof) 7 

LEOPARD (LS) SHP2 phosphatase (lof) 8, 9 

 c-Raf-1 serine/threonine kinase 10 

Neurofibromatosis 1 (NF1) Neurofibromin RasGAP (lof) 11-13 

Noonan (NS) SHP2 phosphatase (gof) 14 

 Sos1 RasGEF (gof)  15, 16 
 K-Ras GTPase (gof) 17 
 N-Ras GTPase (gof) 18 
 c-Raf-1 serine/threonine kinase 

(gof) 
10, 19 

Noonan-like syndrome with loose anagen hair Shoc2 scaffold protein (gof) 20 
 
*Gain-of-function (gof) ; loss-of-function (lof) 
 
 



References 
 
1. Oliveira JB, Bidere N, Niemela JE, Zheng L, Sakai K, Nix CP, Danner RL, Barb J, Munson PJ, Puck JM, 
Dale J, Straus SE, Fleisher TA, Lenardo MJ. NRAS mutation causes a human autoimmune lymphoproliferative 
syndrome. Proc Natl Acad Sci U S A 2007; 104:8953-8. 
2. Eerola I, Boon LM, Mulliken JB, Burrows PE, Dompmartin A, Watanabe S, Vanwijck R, Vikkula M. Capillary 
malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. Am J 
Hum Genet 2003; 73:1240-9. 
3. Niihori T, Aoki Y, Narumi Y, Neri G, Cave H, Verloes A, Okamoto N, Hennekam RC, Gillessen-Kaesbach G, 
Wieczorek D, Kavamura MI, Kurosawa K, Ohashi H, Wilson L, Heron D, Bonneau D, Corona G, Kaname T, Naritomi 
K, Baumann C, Matsumoto N, Kato K, Kure S, Matsubara Y. Germline KRAS and BRAF mutations in cardio-facio-
cutaneous syndrome. Nat Genet 2006; 38:294-6. 
4. Rodriguez-Viciana P, Tetsu O, Tidyman WE, Estep AL, Conger BA, Cruz MS, McCormick F, Rauen KA. 
Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science 2006; 
311:1287-90. 
5. Aoki Y, Niihori T, Kawame H, Kurosawa K, Ohashi H, Tanaka Y, Filocamo M, Kato K, Suzuki Y, Kure S, 
Matsubara Y. Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat Genet 2005; 37:1038-40. 
6. Hart TC, Zhang Y, Gorry MC, Hart PS, Cooper M, Marazita ML, Marks JM, Cortelli JR, Pallos D. A mutation 
in the SOS1 gene causes hereditary gingival fibromatosis type 1. Am J Hum Genet 2002; 70:943-54. 
7. Brems H, Chmara M, Sahbatou M, Denayer E, Taniguchi K, Kato R, Somers R, Messiaen L, De Schepper 
S, Fryns JP, Cools J, Marynen P, Thomas G, Yoshimura A, Legius E. Germline loss-of-function mutations in 
SPRED1 cause a neurofibromatosis 1-like phenotype. Nat Genet 2007; 39:1120-6. 
8. Digilio MC, Conti E, Sarkozy A, Mingarelli R, Dottorini T, Marino B, Pizzuti A, Dallapiccola B. Grouping of 
multiple-lentigines/LEOPARD and Noonan syndromes on the PTPN11 gene. Am J Hum Genet 2002; 71:389-94. 
9. Legius E, Schrander-Stumpel C, Schollen E, Pulles-Heintzberger C, Gewillig M, Fryns JP. PTPN11 
mutations in LEOPARD syndrome. J Med Genet 2002; 39:571-4. 
10. Pandit B, Sarkozy A, Pennacchio LA, Carta C, Oishi K, Martinelli S, Pogna EA, Schackwitz W, Ustaszewska 
A, Landstrom A, Bos JM, Ommen SR, Esposito G, Lepri F, Faul C, Mundel P, Lopez Siguero JP, Tenconi R, 
Selicorni A, Rossi C, Mazzanti L, Torrente I, Marino B, Digilio MC, Zampino G, Ackerman MJ, Dallapiccola B, 
Tartaglia M, Gelb BD. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic 
cardiomyopathy. Nat Genet 2007; 39:1007-12. 
11. Cawthon RM, O'Connell P, Buchberg AM, Viskochil D, Weiss RB, Culver M, Stevens J, Jenkins NA, 
Copeland NG, White R. Identification and characterization of transcripts from the neurofibromatosis 1 region: the 
sequence and genomic structure of EVI2 and mapping of other transcripts. Genomics 1990; 7:555-65. 
12. Viskochil D, Buchberg AM, Xu G, Cawthon RM, Stevens J, Wolff RK, Culver M, Carey JC, Copeland NG, 
Jenkins NA, et al. Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 
1990; 62:187-92. 
13. Wallace MR, Marchuk DA, Andersen LB, Letcher R, Odeh HM, Saulino AM, Fountain JW, Brereton A, 
Nicholson J, Mitchell AL, et al. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three 
NF1 patients. Science 1990; 249:181-6. 
14. Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, van der Burgt I, Crosby AH, Ion A, 
Jeffery S, Kalidas K, Patton MA, Kucherlapati RS, Gelb BD. Mutations in PTPN11, encoding the protein tyrosine 
phosphatase SHP-2, cause Noonan syndrome. Nat Genet 2001; 29:465-8. 
15. Roberts AE, Araki T, Swanson KD, Montgomery KT, Schiripo TA, Joshi VA, Li L, Yassin Y, Tamburino AM, 
Neel BG, Kucherlapati RS. Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat Genet 2007; 
39:70-4. 
16. Tartaglia M, Pennacchio LA, Zhao C, Yadav KK, Fodale V, Sarkozy A, Pandit B, Oishi K, Martinelli S, 
Schackwitz W, Ustaszewska A, Martin J, Bristow J, Carta C, Lepri F, Neri C, Vasta I, Gibson K, Curry CJ, Siguero 
JP, Digilio MC, Zampino G, Dallapiccola B, Bar-Sagi D, Gelb BD. Gain-of-function SOS1 mutations cause a 
distinctive form of Noonan syndrome. Nat Genet 2007; 39:75-9. 



17. Schubbert S, Zenker M, Rowe SL, Boll S, Klein C, Bollag G, van der Burgt I, Musante L, Kalscheuer V, 
Wehner LE, Nguyen H, West B, Zhang KY, Sistermans E, Rauch A, Niemeyer CM, Shannon K, Kratz CP. Germline 
KRAS mutations cause Noonan syndrome. Nat Genet 2006; 38:331-6. 
18. Cirstea IC, Kutsche K, Dvorsky R, Gremer L, Carta C, Horn D, Roberts AE, Lepri F, Merbitz-Zahradnik T, 
Konig R, Kratz CP, Pantaleoni F, Dentici ML, Joshi VA, Kucherlapati RS, Mazzanti L, Mundlos S, Patton MA, Silengo 
MC, Rossi C, Zampino G, Digilio C, Stuppia L, Seemanova E, Pennacchio LA, Gelb BD, Dallapiccola B, Wittinghofer 
A, Ahmadian MR, Tartaglia M, Zenker M. A restricted spectrum of NRAS mutations causes Noonan syndrome. Nat 
Genet 2009; 42:27-9. 
19. Razzaque MA, Nishizawa T, Komoike Y, Yagi H, Furutani M, Amo R, Kamisago M, Momma K, Katayama H, 
Nakagawa M, Fujiwara Y, Matsushima M, Mizuno K, Tokuyama M, Hirota H, Muneuchi J, Higashinakagawa T, 
Matsuoka R. Germline gain-of-function mutations in RAF1 cause Noonan syndrome. Nat Genet 2007; 39:1013-7. 
20. Cordeddu V, Di Schiavi E, Pennacchio LA, Ma'ayan A, Sarkozy A, Fodale V, Cecchetti S, Cardinale A, 
Martin J, Schackwitz W, Lipzen A, Zampino G, Mazzanti L, Digilio MC, Martinelli S, Flex E, Lepri F, Bartholdi D, 
Kutsche K, Ferrero GB, Anichini C, Selicorni A, Rossi C, Tenconi R, Zenker M, Merlo D, Dallapiccola B, Iyengar R, 
Bazzicalupo P, Gelb BD, Tartaglia M. Mutation of SHOC2 promotes aberrant protein N-myristoylation and causes 
Noonan-like syndrome with loose anagen hair. Nat Genet 2009; 41:1022-6. 
 
 


	1
	2
	3

